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ABSTRACT 
As motivation for the symposium on extended-scale 

atomistic methods, I briefly discuss the time scale prob- 
lem that plagues molecular dynamics simulations, some 
promising recent developments for circumventing the 
problem, and some remaining challenges. 
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INTRODUCTION 
The nanoscale is an exciting regime for practitioners 

of atomistic simulation techniques, because in the last 
few years there has been a crossing of the length scales 
accessible to simulation and experiment. The size of a 
nanofeature that can be directly synthesized and probed 
experimentally has continued to  decrease, while simula- 
tion sizes have increased. Using parallel computers, it 
is now fairly easy to  simulate millions of atoms using 
molecular dynamics, and it is possible to reach a billion 
atoms if desired. Thus, in many cases, a direct simula- 
tion of an entire nanoscale device can now be performed. 

In contrast to this pleasant length-scale situation, 
the time scales accessible to molecular dynamics simu- 
lation remain a serious problem. Because the classical 
equations of motion must be integrated sequentially us- 
ing time steps on the order of one femtosecond (chosen 
to  be more than an order of magnitude shorter than 
the shortest atomic vibrational period), reaching a sim- 
ulation time of even a single microsecond is extremely 
difficult. Increasing computer speeds will improve this 
situation, but not in a qualitative way. Ten years from 
now, optimistically assuming Moore’s law continues to 
hold, we will still not be close to reaching one millisec- 
ond, which is still shorter than the time scale for many 
experimentally relevant processes in the fabrication, ap- 
plication, or degradation of nanoscale devices. For ex- 
ample, in the deposition of a thin film, each monolayer 
of material is deposited in a time on the order of one sec- 
ond, and the morphology of the resulting film is strongly 
affected (often dominated) by diffusive events occurring 
on this time scale. 

For a broad class of systems, the dynamics on this 
longer time scale can be characterized by infrequent 
events - typically thermally activated processes, as in 
the film growth example mentioned. A schematic il- 
lustration of this type of system is shown in Fig. l; 
the system is trapped in a potential basin for a large 
number of vibrational periods. For this type of system 
there are ways around the time-scale problem. A now- 
standard approach is the kinetic Monte Carlo method, 
which can reach extremely long times once a few as- 
sumptions are made. This is briefly described below. 
More recently, there have been developments in methods 
that show promise for reaching long time scales without 
some of the approximations in kinetic Monte Carlo, and 
developments of associated tools for efficiently finding 
saddle points [1]-[4] and transition paths [4], [5 ] ,  includ- 
ing quantum effects [6], etc. 

Although it was claimed above that the length scale 
problem is largely solved for the nanoscale realm, this 
is not true if we ask for simulations that simultaneously 
address relevant lengths and time, since, in general, the 
methods described below are still too expensive for this, 
and most of them exhibit a computational scaling that 
grows superlinearly with the system size, N .  Improving 
this scaling (to achieve N-scaling, ideally) is a remain- 
ing challenge. Until this is achieved, it will be impor- 
tant to combine these methods with the recently devel- 
oped length scale methods such as the quasicontinuum 
method [7], [8] or coarse-grained molecular dynamics [9], 
[lo] . In this symposium we will assess the state of the 
art of this family of time- and length-scale tools and seek 
ways to extend and combine them. Here I very briefly 
describe kinetic Monte Carlo and a few of the time-scale 
methods developed more recently. 

TIME-SCALE METHODS 
In the kinetic Monte Carlo (KMC) method, devel- 

oped over the last 25 years [11]-[16], the system starts in 
some state, typically with atoms assigned to lattice po- 
sitions. Equations of motion are never directly evolved. 
Instead, we focus on the fact that a set of escape path- 
ways connect this state to neighboring states. The key 
requirement in KMC is to specify these escape paths and 
the rate constant for each one. Given this set of rates, 



Figure 1: Schematic illustration of a potential energy 
basin in which the system is trapped (lines are constant- 
energy contours). Infrequent events (activated pro- 
cesses) correspond to the system finding its way out of 
this basin to an adjacent one. The time scale problem 
is that with molecular dynamics, we can only afford to 
follow about a million vibrations, while (depending on 
the system and temperature) the system may remain 
trapped for far longer. 

a simple stochastic algorithm [ll], [12] is employed to 
advance the time and to  choose a neighboring state to 
which the system is moved, after which the procedure is 
repeated. The rate constants for the possible moves out 
of each state might be approximated by a few additive 
parameters, or computed more accurately using transi- 
tion state theory to  make a rate catalog [13], perhaps 
even using first-principles calculations [15]. The KMC 
approach is very powerful, and can typically reach time 
scales many orders of magnitude greater than molecular 
dynamics, since the system advances to  a new state in 
less computer time than would be expended in molec- 
ular dynamics to advance by a single integration step. 
The difficulty in the KMC approach is knowing all the 
possible mechanisms available to  the system for escaping 
from the present state. In recent years, it has become 
clear that these mechanisms can be surprisingly com- 
plex, often involving many atoms and sometimes going 
off-lattice, even in relatively simple systems. Whether 
these unexpected mechanisms are important to the long- 
time dynamical evolution depends on the system, and 
remains to be proven in general, but their very existence 
provides a clear motivation to  develop methods that 
make no a priori assumptions about the mechanisms. 
Recent developments aimed at this goal are sketched in 
the following. These new methods can be used directly 
to follow long-time dynamics or, in principle, used to 
scan for unexpected mechanisms to provide improved 
rate catalogs for KMC, since KMC will always be sub- 
stantially faster. 

In the accelerated dynamics methods, the basic con- 

cept is to perform actual dynamics on the system of 
atoms, allowing it to escape from each basin in any way 
it wants (perhaps via a complex concerted mechanism), 
but to coax it to  escape more quickly than it otherwise 
would. The key is to  realize that the exact details of the 
vibrational motion need not be reproduced. Building 
on transition state theory [17], it is possible to design 
methods that sacrifice information about these vibra- 
tions and gain, in exchange, more rapid escape from the 
basin without corrupting the relative escape probabili- 
ties. Temperature accelerated dynamics (as well as the 
dimer method described below) builds on the principles 
of harmonic transition state theory, in which nearly all 
the information about the rates is contained in the sad- 
dle points for the escape paths (the X’s in Fig. l), but in 
general, it is the flux across the dividing surface (dashed 
line in Fig. 1) that must be correctly described. These 
methods (hyperdynamics, parallel replica dynamics, and 
temperature-accelerated dynamics) are described else- 
where in these proceedings [18], [19] and, along with the 
dimer method discussed below, have been recently re- 
viewed [20]. 

In hyperdynamics [21], [18], one designs a positive 
bias potential which, when added to the original po- 
tential, has the effect of making the basins less deep. 
If the bias potential is carefully constructed to be zero 
at  all the dividing surfaces, and does not create corre- 
lated dynamical events (e.g., recrossings of a dividing 
surface), then the dynamics on the biased potential give 
a proper state-to-state sequence of transitions. The con- 
cept of filling in the basin to stimulate more rapid es- 
cape is similar to the conformational flooding approach 
of Grubmuller [22]. In hyperdynamics, the accelerated 
time becomes a statistical property of the system, es- 
timated as the simulation evolves. Designing effective 
bias potentials is challenging, and is a subject of ongo- 
ing research [20]. 

In the parallel replica method [23], [18], a replica of 
the system is placed on a number of processers. Exploit- 
ing the properties of the exponential probability distri- 
bution for the first-passage time, it is possible to  show 
that by simply accepting whichever event occurs first on 
any of the processors, and adding the time accumulated 
on all the processors (after an initial dephasing period), 
the exact dynamical evolution of the system is obtained. 
In favorable cases, a full parallel speedup can be ob- 
tained, and the method is quite general. For example, 
Zagrovic et a1 [24] have recently designed a clever tran- 
sition detection scheme for the detection of transitions 
among free-energy basins in a small protein, and applied 
parallel replica to  follow the folding dynamics. Properly 
applied, parallel-replica makes no transition state the- 
ory assumption, and even appears to  be applicable to 
driven systems [25], something that is much harder for 
other extended-time methods. 



The temperature accelerated dynamics (TAD) method 
[26], [ 191 utilizes the Arrhenius temperature dependence 
of the rate constants in harmonic transition state the- 
ory. Molecular dynamics simulation is performed at an 
elevated temperature while the system is confined to its 
current basin - i.e., every attempted escape is reflected 
back into the basin. An extrapolation procedure gives 
a predicted time at which each of these attempted es- 
capes would have occurred at the lower (desired) tem- 
perature. With one additional assumption of a mini- 
mum preexponential factor, it is possible to say when the 
high-temperature simulation can be terminated, know- 
ing what escape path the system would have chosen at 
low temperature (and when). The TAD method is more 
approximate than hyperdynamics or parallel-replica dy- 
namics, but also appears to give greater boost in most 
situations. Various enhancements in both the speed [27] 
and accuracy are now being explored. 

The final method I mention is the dimer method [4], 
[28]-[30]. The “dimer” refers to a two-configuration con- 
struction that, by optimizing its orientation, gives the 
lowest eigenvalue and eigenvector of the Hessian ma- 
trix without ever constructing the Hessian [4], [31], [32]. 
Henkelman and J6nsson have turned this dimer con- 
struct into a highly efficient saddle-finding algorithm, in 
which the dimer follows the lowest eigenvector up the 
energy trough to the saddle. Recently [28], they have 
shown that, given a number of dimer searches initiated 
as random displacements from the basin minimum, they 
can find enough low-lying saddle points to  do an effec- 
tive “on-the-fly” kinetic Monte Carlo simulation. As in 
TAD, one exploits the fact that in harmonic transition 
state theory the escape rate for a given pathway depends 
purely on saddle point. However, in this dimer-KMC ap- 
proach, one never needs to  run a trajectory. Although 
it is possible that the random search procedure can miss 
relevant saddle points, preliminary results indicate that 
the method is powerful and efficient, and has no problem 
finding highly concerted mechanisms. 

CONCLUSIONS 

Recent developments in methods for extending the 
time scale accessible to atomistic simulations look promis- 
ing. Already, applications to metallic surface growth 
[28], [33] have achieved time-scale enhancements of many 
orders of magnitude (e.g., reaching realistic growth rates 
in the monolayer per second range [33]). Interesting 
and challenging problems remain, such as improving the 
computational scaling with system size, combining time- 
scale methods with length-scale methods, adapting the 
methods to other system types (e.g., soft matter), and 
transferring advanced mechanism information to KMC. 
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